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OncoPeptTUMETM — A novel in-silico approach to model the tumor 
microenviroment and predict treatment efficacy and long-term survival  benefits 
for immunotherapy applications

Background

Cancer immunotherapy is now established as a major therapeutic modality, and 70% of all cancer patients are 
estimated to receive some form of immunotherapy treatment as a part of their disease control by 2025. Cancer 
immunotherapy drugs elicit their anti-tumor immune response in a subset of the treated patients by activating CD8 
T-cells and provide sustainable and long-lasting benefit in a few. Recently significant efforts have been devoted to 
understanding the factors that influence response to immuno-therapy or contribute to the development of resistance 
to therapy. While it is appreciated that many different tumor cell- intrinsic and extrinsic features, including the tumor 
microenvironment, driver gene mutations, host genetics, microbiome and environmental factors modulate response 
to immune checkpoint inhibitors 1, the tumor microenvironment ecosystem could be a major contributor in regulating 
response to immunotherapy and development of resistance 2,3. Ongoing efforts to characterize the tumor 
microenvironment to stratify patients for immunotherapy, and find biomarkers of response often use methods that 
are limited by 1) availability of adequate tumor tissue from needle biopsy material; 2) restricted set of cell surface and 
phenotypic markers to analyze the cellular composition with limited tissue availability, and 3) loss of tissue integrity 
during processing for downstream analysis. Recently, single-cell transcriptomics has enabled studies to analyze the 
heterogeneity in a population of cells from a tissue and define gene expression signatures in the tumor 
microenvironment 4,5, but the quality of data generated is still governed by the sample collection method and quality of 
RNA (determined by the presence of viable cells). Alternatively, genomic methods that use deconvolution to assess 
relative enrichment of different cells types can be utilized to understand the composition of the tumor 
microenvironment, but that approach can also be limited in utility by biases introduced by dependencies in the cell 
type 6. Taken together, a robust method of studying the tumor microenvironment to identify the molecular signature is 
still needed. To this end, Signios Bio has developed OncoPeptTUMETM, a genomic solution that utilizes its highly 
cell-type specific proprietary minimal gene expression signature for 8 different immune cells. The expression of genes 
for a given signature was transformed to produce a cell-type specific immune score that was used to quantitate the 
relative proportion of cell types present in the complex tumor microenvironment. In this white-paper we highlight a) 
how the proprietary gene expression signatures were generated and validated, b) robustness of our gene signatures 
compared to other existing methods in identifying cell types of interest c) utility of the OncoPeptTUMETM in defining 
immunogenicity (via immune score assignments) of tumors and predicting prognosis and long-term survival benefits 
based on the immune signatures of the tumors.

Figure 1. Workflow for building the minimal gene expression signatures (MGESPs) : The microarray gene expression 
data  contd.
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was used to calculate the ARS and MES scores ( measures of specificity and plasticity of a gene in each of the pure cell 
types respectively). The signatures were further refined by curation and validated on an independent set of microarray 
and RNA-Seq data from pure cell populations.

Creating immune specific gene expression signatures

To generate unique gene expression signatures for specific immune cell-type, a large number of microarray and 
RNA-seq datasets of pure immune cells from 4 different platforms were analyzed (Table 1) Genes showing significantly 
lower expression plasticity- high MES (Marker Evaluation Score) and higher expression specificity for a given cell-type 
high ARS (Average Rank Score) were included in the signature and were refined further by literature review and data 
curation (Figure 1). We applied single-cell Gene Set Enrichment Analysis ssGSEA to determine cell-type specific scores 
associated with each gene signature. Briefly, normalized gene expression values were rank-normalized and 
rank-ordered, and the score for a given signature was calculated based on the position of the genes in the rank-ordered 
list. We employed a multi-pronged approach to create highly specific signatures corresponding to different cell types 
present in the tumor microenvironment as shown in Figure 1.

Table 1 - Datasets used to generate the gene expression signatures

Figure 1. Validation of gene expression signatures : (A) Validation of MGESPs on RNA-Seq data represented as boxplots 
with cells on the x-axis and immune scores on the y-axis. Each facet represents the immune score (y-axis) calculated for 
a specific cell-type plotted on the x-axis. A higher score was observed for cognate cell type compared to non-cognate 
cells. (B) Performance comparison of MGESPs with other published signatures on FACS data8,9,10. Figure shows 
correlation between MGESP scores with FACS- based enumeration of cells. Size of the bubble indicates sample number, 
and blue circle represents positive correlation and red circle represents negative correlation.

Validation of the gene expression signatures

The specificity of gene signatures was validated on highly purified cell-type data (cells with >90% purity) obtained from 
various published studies (Table 1). The raw data were downloaded from public databases and processed using 
in-house microarray and RNA-seq analysis pipelines. In contrast to non-cognate cells, our signatures yielded a relatively 
higher score for the cognate cell type. We also tested whether the different number of reads from different experi-
ments will affect the immune score for a specific cell type, and we observed that the scores were stable across the 
whole range of data size, indicating that our scoring method is robust for analyzing and comparing tumors whose 
transcriptomes were sequenced at different depth in different experiments.
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Creating immune specific gene expression signatures

To test the utility of the OncoPeptTUMETM in defining immune signatures and assigning immune scores to cancers for 
interest, we decided to utilize RNA-seq data from 33 cancers from the TCGA datasets and performed a tumor 
microenvironment analysis using the OncoPeptTUMETM pipeline. Based on our analyses, each of the tumors have an 
immune score assigned to them, and categorized into quartiles, to represent high (Q1) versus low (Q4) level of immune 
infiltration. (Figure 3a) . We also identify the relative enrichment of the 8 different immune cell types in the cancers 
(Figure 3b). Our analyses revealed interesting findings about the immune compositions of the different tumor types. For 
example, we find that Kidney renal cell carcinoma (KIRC) being an immune-sensitive tumor had a high infiltration of all 
the immune cell types except Treg cells, whereas kidney renal papillary cell carcinoma (KIRP) showed lesser infiltration 
of most immune cell types. Interestingly, kidney chromophobe cancer (KICH) showed a high infiltration of NK cells and 
low infiltration of other cell types, previously reported by immunohistochemistry analysis. In conclusion, the analyses 
using OncoPeptTUMETM shed interesting insights into the immune landscape of different cancers 10.

Figure 3. Comprehensive analysis of the immune landscape of 9640 tumors across 33 cancers using OncoPeptTUMETM 
: (A) Shows the OncoPeptTUMETM workflow to process 9640 TCGA datasets to identify cancers of the highest immune 
filtration for a particular immune cells type. MGESP-derived score for each cell type was calculated for each of the 
tumors and arranged into quartiles. Q1 implies highest level of infiltration of a certain immune cell type into the tumor 
and Q4 implies lowest level of expression. (B) Representation of the relative enrichment of 8 different immune cell types 
in all the different cancer type.
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OncoPeptTUMETM identifies effect of immune cell infiltration on long-term survival in TCGA cancer-types

A

B

Figure 4. (A) Representation of the correlation of immune infiltration seen in SKCM and LUAD cancers. (B) Correlation 
between infiltration of different immune cells and patient survival. For each cancer survival benefit between the top and 
20% tumor samples infiltrated by specific immune cells was compared. Size of the bubble shows sample number, red 
and blue indicates good and poor prognosis respectively, and significant associations ( p-value <.005) are shown. C) 
Effect of combined infiltration of two cell-types on patient survival represented as Kaplan Meir Plots for selected 
cancers.

Utility of OncoPeptTUMETM analysis in predicting response to immune checkpoint inhibitors treatment

We then decided to apply the immune scoring to understand the immunogenicity of the tumor samples, and assess 
efficacy to immunotherapy treatment. In the current field of immunotherapy, presence of high levels of tumor 
infiltrating leukocytes in solid tumors is often correlated with better survival 12. It has also been suggested that different 
cancers benefit from infiltration of different types of immune cells. For example, the co-occurrence of T cells and NK 
cells in tumors enhances the efficacy of cancer immunotherapy drugs 13. However, there has been no systematic 
analysis of co-infiltration of multiple immune cells across different cancers. Therefore, we used the TCGA data to 
investigate the landscape of co-infiltrating immune cells in all 33 cancers. For cancers that have shown a good response 
to immune checkpoint inhibitors (SKCM, KIRC, bladder carcinoma (BLCA, LUAD, head and neck squamous cell 
carcinoma (HNSCC), a positive correlation between CD8+ T-cells and NK cells, was observed with the strongest 
correlation detected in SKCM and LUAD ( Figure 3C). In addition, using the MGESPs, we were able to uncover that 
survival benefit was positively or negatively affected by the co-infiltration of multiple immune cells. As an example, 
kidney renal carcinoma (KIRC) benefited from the infiltration of CD4+ T-cells and neutrophils, whereas sarcomas (SARC) 
showed a survival benefit from co-infiltration of CD8+ T-cells and monocytes. Conversely, LGG showed poor survival 
from the co-infiltration of Treg cells and monocytes. We also observed that the combined benefit of co-infiltration by 
CD8+ T-cells + neutrophils in KIRC, or CD4+ T-cells monocytes in SARC exceeded the survival benefit observed from the 
infiltration of an individual type of cell.

Skin cutaneous melanoma (SKCM) Lung adenocaricnoma (LUAD)
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OncoPeptTUMETM analysis reveals functional features of CD8 + T cells associated with long term survival in many 
cancers

To further investigate, how different immune cells co-operate with each other or act against each other to impact 
survival, we clustered 9120 TCGA tumors (patients with survival data available) into clusters based on the combined 
infiltration of eight different immune cell types (Figure 5A). The tumor samples clustered into four major groups 
according to the relative content of eight different immune cells (Fig. 5A). Cluster 3 and 4 had high CD8+ T-cell 
infiltration compared to cluster 1 & 2 (Figure 5B). Next, we analyzed cluster-4 with high CD8+ T-cells to investigate the 
mechanism of survival. Of the 1554 cases in cluster 4, 1200 belong to live and the remainder are deceased. We utilized 
this data set to probe the functional state of the CD8+ T-cells in both the groups, and found that while both groups have 
expression of activation marker PD-1 , only the deceased group was enriched for markers of exhausted and anergic 
CD8+ T-cells expressing CTLA4, LAG3 and TIM3 (Figure 5C). Further, CD8+ T-cells in the alive group showed higher 
expression of genes belonging to TCR signaling pathway supporting their activated phenotype (Figure 5D). 
Interestingly, the markers of long-term survival identified by OncoPeptTUMETM are the same that determines response 
to checkpoint blockade 14, strongly demonstrating the utility of OncoPeptTUMETM in cancer immunotherapy clinical 
trials.

Figure 5. (A) Clustering of TCGA patient samples using hierarchical clustering using immune scores derived using the 
minimal gene expression. Four major clusters are represented in different colors with their corresponding immune cell 
type infiltration represented as a heatmap below the dendrogram. (B) Boxplot showing the variation in the distribution 
of immune infiltration scores for each immune cell type across the four clusters. (C) Correlation of expression between 
the infiltration of CD+ T-cells vs the anergic and exhaustion markers with the CD8+ T-cell in the two groups. (E) Cartoon 
representation of the genes upregulated in the TCR signaling pathway in the alive subjects of cluster-4.

(A)

(C)

(B)

(D)
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